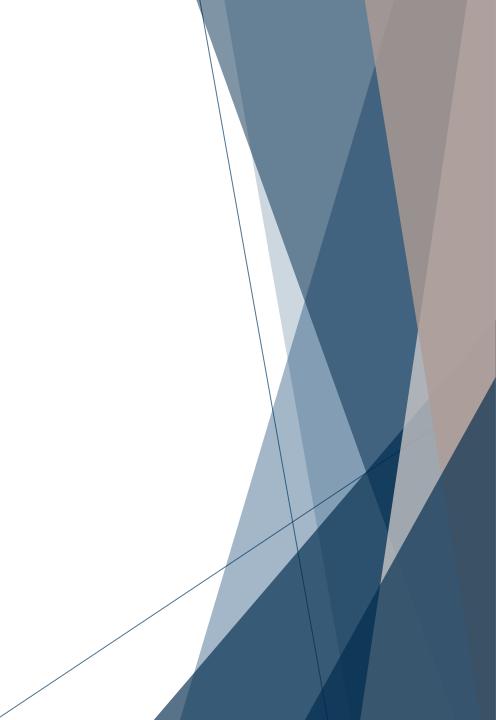


Virtual Energy Assessments



A4LE ASSOCIATION DAYS

Today's Presenter

► Yash Pinapati

Program Manager at Willdan, Contractor for Duke Energy

Agenda

- Introduction
- Process
- Measures
- Traditional Energy Audit Pros and Cons
- Virtual Energy Assessment Pros and Cons

- Case Study 1
- Case Study 2
- Summary

What Are Virtual Energy Assessments?

- ► In-depth analysis of existing buildings
- Energy modeling
- ► Lower energy costs
- Evaluate facility improvements
- Duke Energy incentive offering

What is Offered with a Virtual Assessment?

Energy consulting services and whole-building energy analysis

Implementation costs estimates

Custom savings and incentive calculations

Professional, unbiased analysts

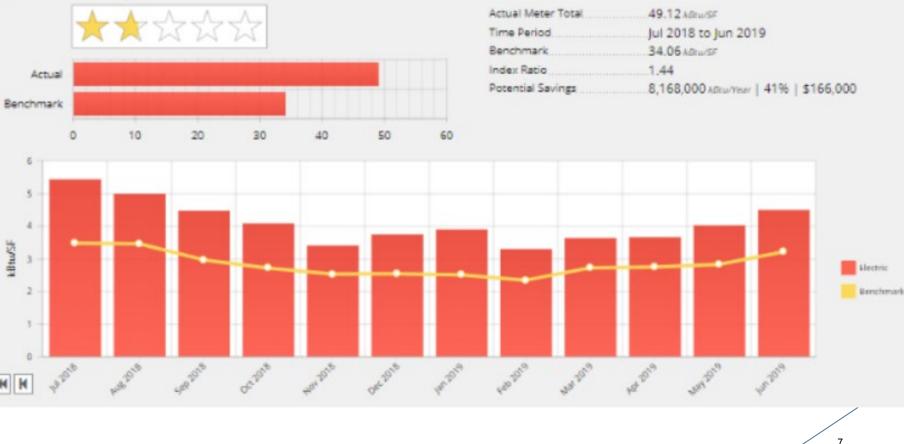
 $\overbrace{\bullet \bullet \bullet}$

Assistance with the Smart Saver Incentive Application

Benefit 1 Free preliminary benchmark analysis to verify savings opportunities

Benefit 2 Streamlined audit process; building data collected remotely Benefit 4 Real-time measure selections during results meeting

Benefit 6 Understand the measures that most impact your bottom line


Benefit 3 Quick turnaround time

Benefit 5 Evaluate implementation costs, savings and incentives Benefit 7 Assistance with all Duke Energy incentive paperwork

Benchmark Analysis

Actual usage higher than benchmark: Good opportunity for energy savings

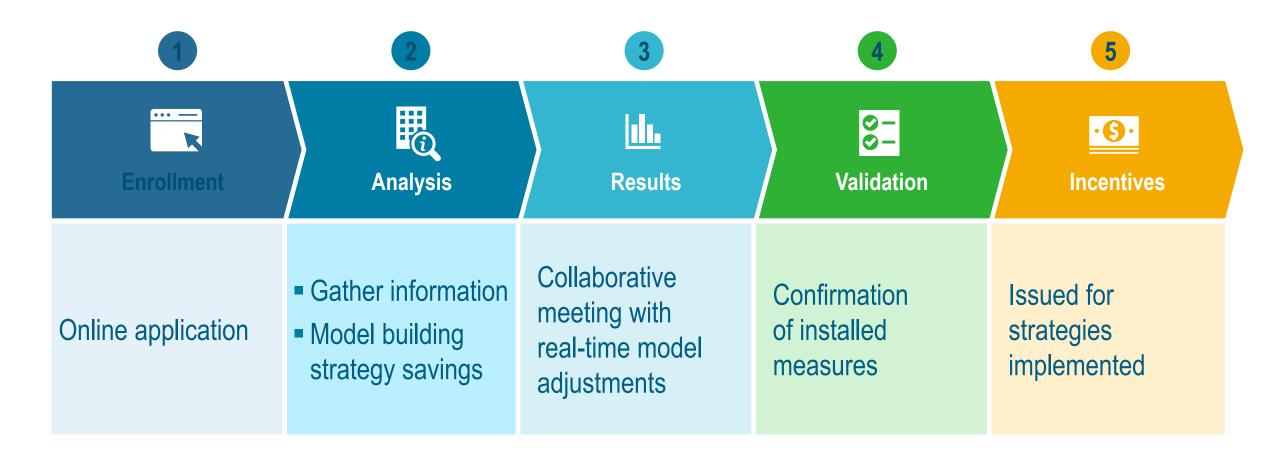
Figure 1 - Building Performance vs. Benchmark

Benchmark Analysis

Actual usage lower than benchmark: Minimal opportunity for energy savings

Actual Meter Total 105.22 kBlu/SF Time Period. Jul 2018 to Jun 2019 166.42 kittu/SF Benchmark 0.63 Index Ratio Actual Potential Savings Benchmark 150 50 100 200 20 15 kBtu/SF **Electric** Benchmark 5 118 2018 4 2018 spatist antis waters are an an an an an an an -07019

8


Figure 1 - Building Performance vs. Benchmark

Measures That Can Be Assessed

- Lighting upgrades
- Lighting controls
- ► HVAC efficiency improvements
- HVAC replacements
- Building controls
 - DDC system upgrades
 - Fan, pump, supply air, chilled water and hot water resets
 - ► Night temperature setbacks
 - Increased thermostat control
 - Outside air reductions
- Building envelope improvements
- And more!

undle Parameters	Planned	Better		Best	\$35,000			
nergy Cost Savings	\$5,048 7%	\$12,640 15 %		\$30,610 34%	\$30,000			
eak Electric Savings (kW)	28.3 17 %	41.4 24 %		61.3 36 %				
lectric Savings (kWh)	25,560 7%	64,258 16 %		92,445 24 %	\$25,000			
as Savings (Therm)	3,676 11 %	6,038 18 %		14,731 45 %	\$20,000			_
ncremental First Cost	\$75,147	\$156,275		\$272,549	\$15,000			
Projected Incentive	\$2,860	\$5,589		\$11,064				
let Incremental First Cost	\$72,287	\$150,686		\$261,485	\$10,000			
Payback with Incentive (yr)	14.3	11.9		8.5	\$5,000			-
nergy Use Intensity (kBtu/ft²/yr)	127	116		87	so			
	Select	Select		Select		Planned	Better	Bes
Strategy Selection Mechanical Architectural		Plug Loads	X III	Select Tab by SAA Tab by Ca		Planned 배 Filter		Best
Mechanical Architectural	Lighting	Plug Loads Saving:	75	Tab by SAA Tab by Ca	ategory No Tabs	W Filter	Clear Sel	lections
Mechanical Architectural		Plug Loads					Clear Sel	Best lections Bundles
Mechanical Architectural	Lighting Electric Peak	Plug Loads Saving: Electric	gs Gas	Tab by SAA Tab by Ca	ategory No Tabs	∰ Filter Payback	Clear Sel	lections
Mechanical Architectural	Lighting Electric Peak kW	Plug Loads Saving: Electric	gs Gas	Tab by SAA Tab by Ca	ategory No Tabs	∰ Filter Payback	Clear Sel	lections

Traditional Energy Audit

- In person interaction with facility engineers and staff. Find out the "real" issues of the building and the systems
- Ability to have eyes on the equipment
- Ability to take photos/videos, deploy data loggers, or take measurements for later use

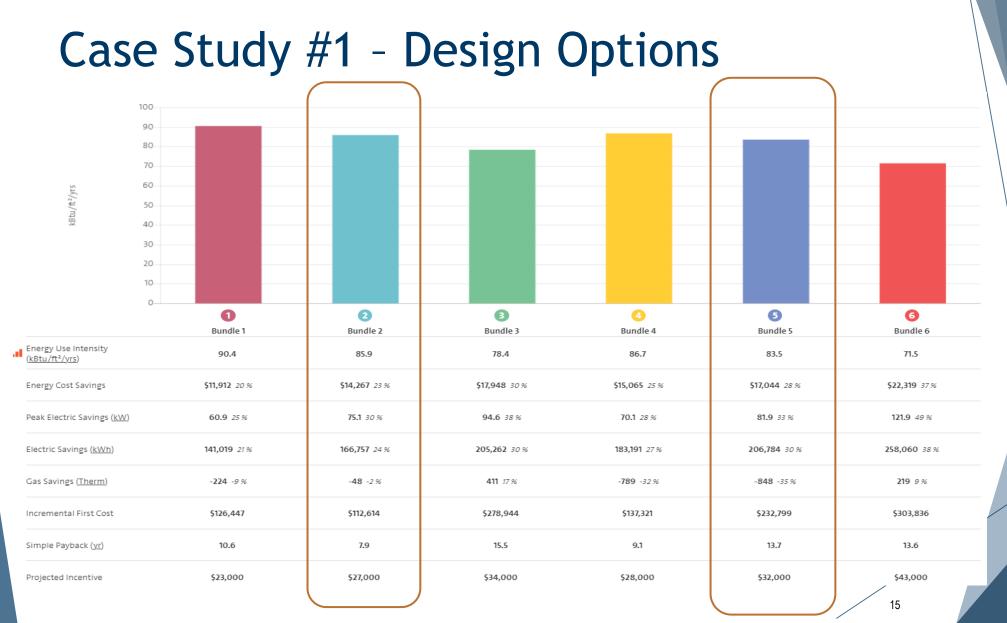
Drawbacks

- Coordination of key facility team members takes time away from core job responsibilities
- Often requires an escort to provide access to secured areas
- Travel time for auditor to/from facility; could require air travel
- Safety concerns including working on or around ladders, loud noises, hazardous materials, unfavorable weather, COVID-19

Case Study #1 - Overview

Community College in Raleigh, North Carolina

- Planned renovation of mechanical and lighting systems
- 2 buildings; 118,000 total square feet; climate zone 4A
- ► Offices, library, and classrooms
- Typical operating schedule
- Existing building systems
 - ► HVAC: 4-pipe fan coil units served by gas-fired boiler and air-cooled chiller
 - ► Lighting: Fluorescent tubes, CFLs and incandescent canister lights


Case Study #1 - Overview

Community College in Raleigh, North Carolina

- Ongoing maintenance issues with the air-cooled chillers
- ► Fan coil units improperly sized or zoned causing comfort complaints
- Multiple fluorescent tube light fixtures to maintain

Case Study #1 - Design Options

- Initially planned on replacing chillers in kind
- Customer wanted to explore decentralizing the cooling system and simplifying HVAC maintenance
- Design team wanted a quick way to explore HVAC alternates
- ► 6 energy saving strategy bundles were developed
 - ► 3 scenarios replacing the air-cooled chiller in kind
 - ► 3 scenarios replacing the air-cooled chiller with a DX VAV system

Air-cooled Chiller Options

DX VAV Options

Case Study #1 - Design Options

Case Study #1 - Program Impact

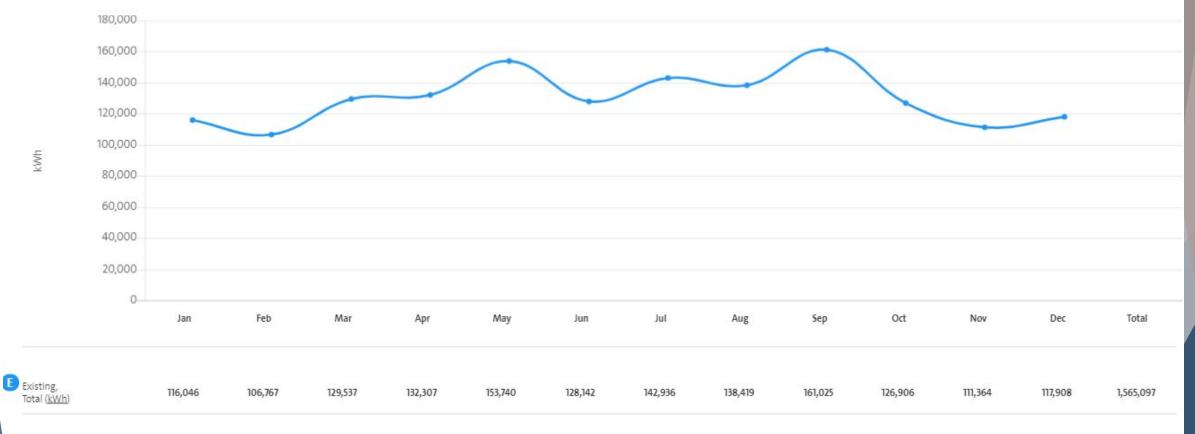
Benefits of Virtual Energy Analysis to Planned Renovation

- ► Free service utilizing experienced energy modelers
- Design team had less time commitment analyzing alternate systems
- ► Helped identify best energy efficiency options for HVAC system scenarios
- Predicted energy savings results are based on real historical utility consumption and actual building operation

17

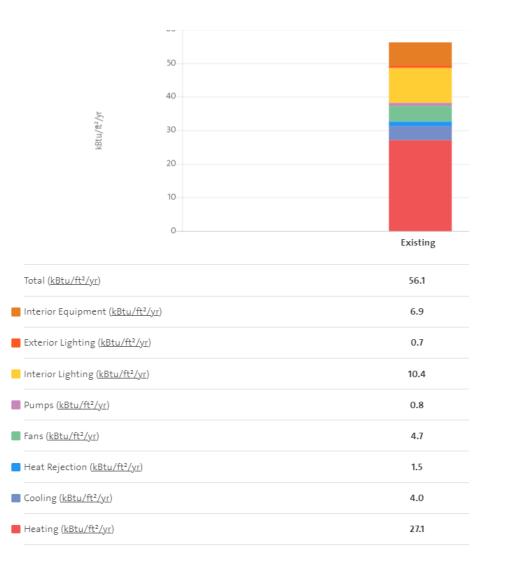
Higher utility incentives available for whole-building model

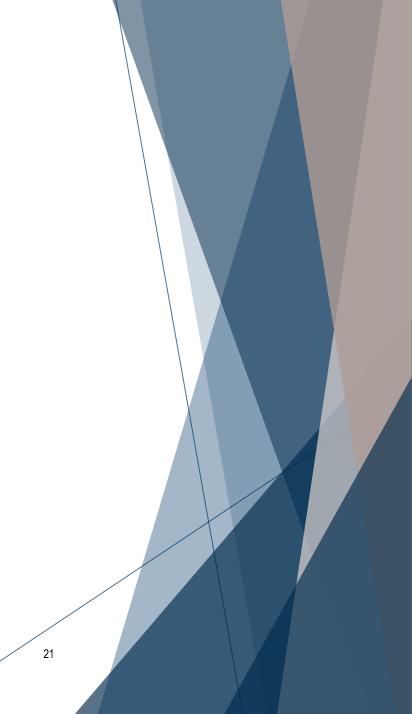
Case Study #2 - Overview Junior High School in Indiana


- ▶ 1 building, ~183,000 ft²; Climate zone 5A
- Typical school usage with partial summer occupancy
- Annual energy cost: \$180,000-190,000
- Existing system type VAV with water cooled chiller and gas boilers, hot water reheat

Case Study #2 - Overview

Junior High School in Indiana


- School has a facility manager and an energy manager
- ► They wanted to become energy-efficient but did not have a plan
- School district budget cycles are long and larger projects need budget preapproval from the school board
- ► HVAC controls were maintained by the contractor and set points weren't monitored
- Larger projects can be completed only during summer so as to cause minimum disruption to school activities


Case Study #2 - Monthly Consumption

Case Study #2 - EUI by End Use

Case Study #2 - Design Options

► 3 bundles with over 20 different strategies were customized to the school district's needs

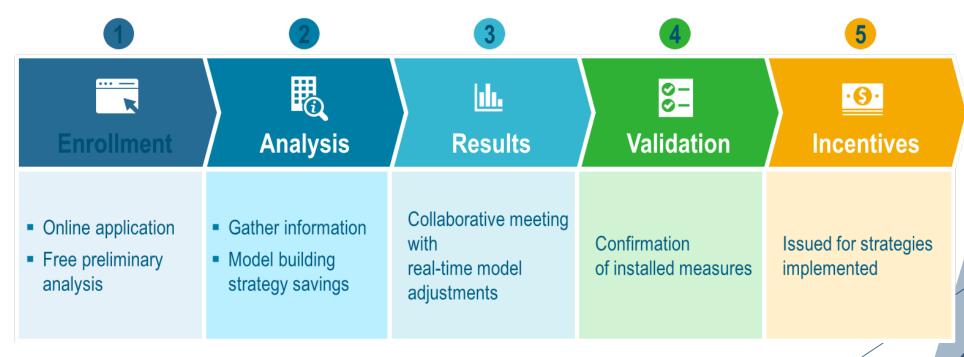
Savings vs Existing	1 Summer '21	2 Summer '22	3 Summer '23
Energy Cost Savings	\$3,328 2%	\$24,779 13 %	\$26,629 14 %
Peak Electric Savings (<u>kW</u>)	4.1 1%	71.2 17 %	72.3 17 %
Electric Savings (<u>kWh</u>)	34,565 2%	286,475 18 %	305,734 20 %
Gas Savings (<u>Therm</u>)	-119 0%	- 5,195 -11 %	- 5,268 -11 %
Incremental Cost	\$177,251	\$78,883	\$82,910
Projected Incentive	\$3,000	\$29,000	\$31,000
Energy Use Intensity (<u>kBtu/ft²/yr</u>)	55.6	53.6	53.3

Case Study #2 - Design Option

VFD on building heating water pump	 0.0	6,600	-69	\$604	0.1	<u>\$2,014</u>	30.0 %	3.3	123
VFD on building chilled water pump	 0.5	12,462	0	\$1,227	0.2	<u>\$2,014</u>	60.9 %	1.6	123
10% improved chiller efficiency	 15.7	18,643	0	\$1,836	0.3	<u> 5397,951</u>	0.5 %	100+	123
20% improved chiller efficiency	 27.2	32,367	0	\$3,187	0.6	<u>\$460,746</u>	0.7 %	100+	123
30% improved chiller efficiency	 38.8	46,095	0	\$4,540	0.9	<u>5522,512</u>	0.9 %	100+	123
VFD on chiller compressor	 16.4	70,742	0	\$6,967	1.3	<u>\$27,353</u>	25.5 %	3.9	123
Frictionless chiller	 12.6	73,881	0	\$7,276	1.4	<u>\$73,501</u>	9.9 %	10.1	123
VFD on cooling tower fan	 1.0	5,768	0	\$566	0.1	<u>\$2,014</u>	28.1%	3.6	123

Case Study #2 - Energy Savings Over the Years

Case Study #2 - Program Impact Benefits of Virtual Energy Analysis to community schools


- ► Helped schools create an energy efficiency plan
- Helped create a phased approach to handle energy efficiency projects

Bundle Parameters	Planned	Better		Best	\$35,000	ost Savings		
nergy Cost Savings	\$5,048 7%	\$12,640 15 %	\$3	0,610 34%				
eak Electric Savings (kW)	28.3 17%	41.4 24%		61.3 36%	\$30,000			
lectric Savings (kWh)	25,560 7%	64,258 16 %	92	2,445 24%	\$25,000			
as Savings (Therm)	3,676 11%	6,038 18 %	14	4,731 45%	\$20,000			
ncremental First Cost	\$75,147	\$156,275	\$	5272,549	\$15,000			
rojected Incentive	\$2,860	\$5,589		\$11,064				
Net Incremental First Cost	\$72,287	\$150,686	\$	5261,485	\$10,000			
ayback with Incentive (yr)	14.3	11.9		8.5	\$5,000		-	
nergy Use Intensity (kBtu/ft²/yr)	127	116		87	so			
Strategy Selection		55	j <mark>ili</mark> Tab t	ny SAA Tab by Ca	ategory No Tabs	∰ Filter	Clear Sel	ection
Strategy Selection <u>Mechanical</u> Architectural	Lighting	SS Plug Loads	[<mark>]]</mark> Tab t	ny SAA Tab by Ca	ategory No Tabs	₩ Filter	Clear Sel	ection
Mechanical Architectural Strategy (>) (>) (>) (>)	Lighting Electric Peak		[hi] Tab t Gas Therm	Tab by Ca	Inc. First cost	W Filter Payback yrs		ection undle
Mechanical Architectural	Electric Peak	Plug Loads Savings Electric	Gas			Payback		

Summary

- Virtual Assessments have their place, though they do not completely replace the traditional onsite energy audit
- ► There is a learning curve for building owners and facility managers
- With advances in technology, including VR, analytics, and AI, virtual assessments have the potential to become the primary form of energy audits in the future

Contractor for

duke-energy.com/virtualaudits 877.939.1001